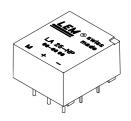


Current Transducer LA 25-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).



E	lectrical data				
I _{PN}	Primary nominal r.m.s. o	25		At	
I _P	Primary current, measuring range		0 ± 36		At
\mathbf{R}_{M}	Measuring resistance		\mathbf{R}_{Mmin}	\mathbf{R}_{Mmax}	
	with ± 15 V	@ ± 25 At _{max}	100	320	Ω
		@ ± 36 At max	100	190	Ω
I_{SN}	Secondary nominal r.m.s	s. current	25		mΑ
K _N	Conversion ratio		1-2-3-4-5 : 1000)0
V _c	Supply voltage (± 5 %)		± 15		V
	Current consumption	10 + I _s		mΑ	
ν ^q	R.m.s. voltage for AC isc	2.5		kV	
V _b	R.m.s. rated voltage 1), safe separation		600		V
J	b	pasic isolation	1700		V

Ad	Accuracy - Dynamic performance data						
X	Accuracy @ I _{PN} , T _A = 25°C		± 0.5		%		
$\mathbf{\epsilon}_{\scriptscriptstyle extsf{L}}$	Linearity		< 0.2		%		
			Тур	Max			
I_{\circ}	Offset current 2) @ $I_p = 0$, $T_A = 25^{\circ}$		± 0.05	± 0.15	mΑ		
I _{OM}	Residual current 3) @ I _P = 0, after a	n overload of 3 x I _{PN}	± 0.05	± 0.15	mΑ		
I _{OT}	Thermal drift of I	0°C + 25°C	± 0.06	± 0.25	mΑ		
0,	Ü	+ 25°C + 70°C	± 0.10	± 0.35	mΑ		
t,	Response time 4) @ 90 % of I _{P max}		< 1		μs		
di/dt	di/dt accurately followed		> 50		A/µs		
f	Frequency bandwidth (- 1 dB)		DC ′	150	kHz		

•	r requericy bandwidth (- 1 db)	DC 130	KI IZ	
G	eneral data			
T _A	Ambient operating temperature	0 + 70	°C	
T _s	Ambient storage temperature	- 25 + 85	°C	
$\mathbf{R}_{_{P}}^{^{T}}$	Primary resistance per turn @ T _A = 25°C	< 1.25	$m\Omega$	
Rs	Secondary coil resistance @ T _A = 70°C	110	Ω	
R	Isolation resistance @ 500 V, T _A = 25°C	> 1500	$M\Omega$	
m	Mass	22	g	
	Standards 5)	EN 50178		

$I_{PN} = 5-6-8-12-25 A$

Features

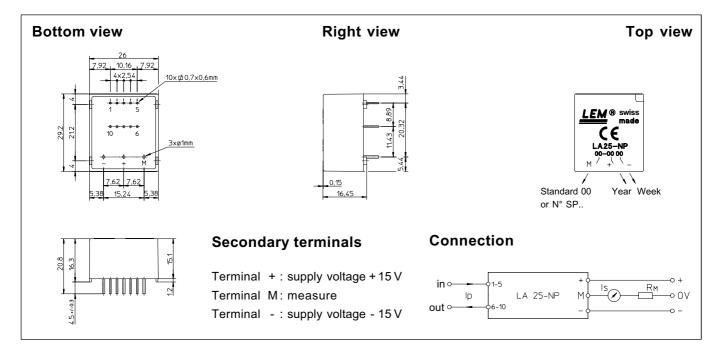
- Closed loop (compensated) multirange current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes : 1) Pollution class 2

- ²⁾ Measurement carried out after 15 mn functionning
- ³⁾ The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs
- ⁵⁾ A list of corresponding tests is available

980909/8

Dimensions LA 25-NP (in mm. 1 mm = 0.0394 inch)

Number of primary turns	Primary nominal I _{PN} [A]	current maximum I _P [A]	Nominal output current I_{SN} [mA]	Turns ratio K _N	Primary resistance \mathbf{R}_{P} [m Ω]	,	Recommended connections
1	25	36	25	1/1000	0.3	0.023	5 4 3 2 1 IN 0-0-0-0-0 0-0-0-0 OUT 6 7 8 9 10
2	12	18	24	2/1000	1.1	0.09	5 4 3 2 1 IN 0-0 0-0-0 0-0 0-0-0 OUT 6 7 8 9 10
3	8	12	24	3/1000	2.5	0.21	5 4 3 2 1 IN 0-0 0 0-0 0-0 0 0-0 OUT 6 7 8 9 10
4	6	9	24	4/1000	4.4	0.37	5 4 3 2 1 IN Q O-Q Q O O O-O O OUT 6 7 8 9 10
5	5	7	25	5/1000	6.3	0.58	5 4 3 2 1 IN 0 0 0 0 0 0 0 0 OUT 6 7 8 9 10

Mechanical characteristics

• General tolerance

• Fastening & connection of primary

• Fastening & connection of secondary

• Recommended PCB hole

± 0.2 mm

10 pins 0.7 x 0.6 mm

3 pins Ø 1 mm

1.2 mm

Remarks

- I_s is positive when I_p flows from terminals 1, 2, 3, 4, 5 to terminals 10, 9, 8, 7, 6
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.